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Abstract. Connections and covariant derivatives are usually taught as a basic
concept of differential geometry, or more precisely, of differential calculus on smooth
manifolds. In this article we show that the need for covariant derivatives may arise,
or at lest be motivated, even in a linear situation. We show how a generalization
of the notion of a derivative of a function to a derivative of a map between affine
spaces naturally leads to the notion of a connection. Covariant derivative is defined in
the framework of vector bundles and connections in a way which preserves standard
properties of derivatives. A special attention is paid on the role played by zero–sets of
a first derivative in several contexts.
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1. Introduction

Definition 1. We say that a real valued function f : (a, b) → R is differen-
tiable at a point x0 ∈ (a, b) ⊂ R if a limit

lim
x→x0

f(x)− f(x0)
x− x0

exists. We denote this limit by f ′(x0) and call it a derivative of a function f at a
point x0.

We can write this limit in a different form, as

(1) f ′(x0) = lim
h→0

f(x0 + h)− f(x0)
h

.

This expression makes sense if the codomain of a function is Rn, or more general,
if the codomain is a normed vector space. Expression on the right-hand side is well
defined, dividing with h is just a multiplication with a scalar 1

h in a vector space.
If we change the domain of a function to be a normed vector space we cannot use
the equation (1) as a definition of a derivative. Dividing with h (which is now a
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vector) does not make sense. Let us take two normed vector spaces V and W over
the same field K and let U ⊂ V be an open subset.

Definition 2. We say that a map f : U → W is differentiable at a point
x0 ∈ U if there exists a continuous linear map L : V → W such that

(2) f(x0 + h) = f(x0) + L(h) + o(h), as h → 0.

We denote this linear map L by Df(x0) and call it a derivative of a map f between
normed vector spaces U and W .

Remark 3. Every linear map between finite dimensional vector spaces is
continuous. So, if we work with finite dimensional vector spaces we can omit the
condition of L being continuous.

Remark 4. One can show, as a corollary of Definition 2, that a map f is
continuous at a point x0. If we change a definition and ask for a map f to be
continuous (instead of L) then we can prove that L is also going to be continuous.
Therefore continuity of a map f and a map L are equivalent conditions (see [4] for
details).

Remark 5. It is clear that Definition 2 is a generalization of Definition 1,
since for U = (a, b) ⊂ V = R the linear map L is a multiplication with a constant
f ′(x0),

L(h) = f ′(x0) · h.

We can write the equation (2) as

(3) f(x)− f(x0) = Df(x0)(x− x0) + o(x− x0), as x → x0.

Seemingly equivalent, equations (2) and (3) are essentially different in one very
important sense. Equation (2) requires a vector structure while equation (3) re-
quires only an affine structure. Formulation (3) gives us an idea on how to define
a derivative of a map between normed affine spaces.

2. Derivative in affine spaces

Let us recall the definition of a normed affine space.

Definition 6. An affine space is a triple (A, V, +) where A is a set, V is a
vector space and + is a map

+ : A× V → A

such that
(Af1) a + 0 = a for all a ∈ A,
(Af2) a + (u + v) = (a + u) + v for all a ∈ A, u, v ∈ V ,
(Af3) for every a1, a2 ∈ A there exists a unique va ∈ V such that a2 = a1 + va.
If V is a normed vector space we say that (A, V, +) is a normed affine space.
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We can define a metric on the set A as

d(a1, a2) := ‖va‖,
where va is the unique vector provided by (Af3). (Af3) also allows us to define a
“subtraction” on A:

(4)
− : A×A → V,

a2 − a1 := va.

The result of this subtraction is not in A but in V .
We can associate a vector space to an affine space if we pick one point a ∈ A

to be the zero vector. This process is called a vectorization of A with respect
to a. The vector space we obtain is isomorphic to V and will be denoted by TaA.
Generalization of Definition 2 gives us the definition of a derivative of a map defined
on affine spaces.

Definition 7. Let f : A → B be a map, where A and B are normed affine
spaces. We say that f is differentiable at a point a ∈ A if there exists a continuous
linear map L : TaA → Tf(a)B such that

f(x)− f(a) = L(x− a) + o(x− a), as x− a → 0.

Again, we denote L as Df(a) and call it a derivative of a map f . The minus
sign that appears on the left–hand side is the map we defined in (4).

Let us see some standard properties of a derivative. The following proposition
shows its linearity.

Proposition 8. Let A be a normed affine space, W a normed vector space
(both over the same field K) and let f, g : A → W be maps that are differentiable
at a ∈ A. Then λf + µg is differentiable at a for all λ, µ ∈ K and it holds

D(λf + µg)(a) = λ ·Df(a) + µ ·Dg(a).

Proof. We make a difference of a map λf + µg at two nearby points x and a:

(λf + µg)(x)− (λf + µg)(a) = λf(x) + µg(x)− λf(a)− µg(a)

= λ(f(x)− f(a)) + µ(g(x)− g(a))

= λ (Df(a)(x− a) + o(x− a)) + µ(Dg(a)(x− a) + o(x− a))

= λ ·Df(a)(x− a) + µ ·Dg(a)(x− a) + o(x− a), x− a → 0,

(third equality holds because f and g are differentiable at a point a). This difference
is a continuous linear map

λ ·Df(a) + µ ·Dg(a) : TaA → W

(up to o(x − a)). We conclude that λf + µg is differentiable at a point a and
proposition holds.



64 J. -Duretić

Remark 9. For maps f, g : A → B defined on affine spaces we cannot take
arbitrary linear combination λf + µg, but we can take linear combinations of the
form λf + (1− λ)g and the conclusion of the previous proposition holds

D(λf + (1− λ)g)(a) = λ ·Df(a) + (1− λ) ·Dg(a).

The product rule is also satisfied.

Proposition 10. Let us take functions f, g : A → R defined on a normed
affine space A. If f and g are differentiable at a ∈ A then fg is differentiable
function and it holds

D(fg)(a) = f(a) ·Dg(a) + g(a) ·Df(a).

The following proposition states that the derivative of a composition is a
composition of derivatives.

Proposition 11. Let A1, A2 and A3 be normed affine spaces and let g : A1 →
A2, f : A2 → A3 be maps between them. If g if differentiable at a ∈ A1 and f is
differentiable at g(a) then f ◦ g is differentiable at a and it holds

D(f ◦ g)(a) = Df(g(a)) ◦Dg(a).

Proofs of Proposition 10 and Proposition 11 are standard and well known.
From Definition 7 it follows that a derivative of a map f (which is differentiable

at every point of an open subset U ⊂ A) is a map

(5) Df : U →
⋃

a∈U

L(TaA;Tf(a)B),

such that Df(a) ∈ L(TaA; Tf(a)B) for all a ∈ U . In other words first derivative of
a map is a section of a vector bundle1

(6) π : L̃ =
⋃

a∈U

L(TaA;Tf(a)B) → U,

where the fiber over a ∈ U is π−1(a) = L(TaA; Tf(a)B).

3. Second derivative

Our next goal is to define the second derivative of a map f . Let us see what is
the second derivative in our motivating example of a map defined on normed vector
spaces. The first derivative is

Df : U → L(V ; W ),

1Informally, a vector bundle is a family of vector spaces that are attached to a manifold in a
smoothly varying way. It combines topology with linear algebra. A section assigns to every point
of a manifold a vector from the vector space attached to this point. See Section 4 for the precise
definitions of a vector bundle (Definition 14) and of a section of a vector bundle (Definition 16).
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and the codomain of this map is again a normed vector space (the space of linear
continuous maps with standard operator norm). From Definition 2 we conclude
that the second derivative, i.e. the differential of Df , is

D2f : U → L(V ;L(V ; W )).

The space L(V ;L(V ; W )) is canonically identified with the space of continuous
bilinear maps V × V → W , which is again a normed vector space denoted by
L2(V ; W ). In a similar manner we can define the derivative of order n,

Dnf : U → Ln(V ; W ),

where Ln(V ;W ) is a space of n–linear maps from V to W .
In the case of maps between affine spaces the situation is more complicated.

First derivative in (5) is not a map defined on affine spaces since L̃ defined in (6)
does not have an affine structure. If we want to find the second derivative of a map
f defined on affine spaces we actually have to differentiate a section of a vector
bundle (6). We could overcome this problem if we worked in the framework of
smooth manifolds. However this way we would not preserve the specific structure
of a map. When we work with affine spaces we cannot interpret n-th derivative as
a n-linear map. But we will preserve some other properties.

Let us see some more examples of differentiation of some suitable sections.

Example 12. (Critical points of a function) Let us take a smooth n-dimen-
sional manifold M and a smooth function

f : M → R.

The first derivative of a function f at any point p ∈ M is a linear map

df(p) : TpM → R.

In other words df(p) is an element of a dual space T ∗p M (we know that the elements
of the cotangent space are called cotangent vectors or tangent covectors). We can
see a derivative of f as a map2

df : M → T ∗M,

such that df(p) ∈ T ∗p M for all p ∈ M . This means that the differential of a function
defined on a manifold is a section of the cotangent bundle

π : T ∗M → M.

Differentiation of this section df (which we have not yet defined) gives us the
second derivative of a function f . However we can find the second derivative (at
some points) even if do not know how to differentiate sections.

Take a critical point q of a function f . Let us recall that a critical point is a
point where the differential vanishes (using the critical points of a Morse function

2In [19] one can find a nice exposition on manifolds and differential forms on manifolds.



66 J. -Duretić

we can describe the topology of a manifold, see [12] for more details). We can define
a bilinear form of the second derivative

d2f(q) : TqM × TqM → R,

as

(7) d2f(q)(Xq, Yq) = Xq(Y (f)).

In the previous equality Y is a vector field that is an expansion of a vector Yq on
some neighbourhood of q. The first derivative of a function defined on R is again a
function defined on R. So it is clear what is the second derivative of such function,
it is again the same object, a derivative of the function. On the other side, the first
derivative of a function defined on a manifold is not a function. But its derivative
in the Y -direction,

Y (f) = df(Y ),

is a function (we can see that that this is the place where the first derivative of f
appears in (7)). Now, differentiation of this function Y (f) in a direction Xq makes
sense.

We can easily prove that the definition (7) does not depend on the expansion
Y but only on its value at q. Let us take some expansion X of a vector Xq. Then

Xq(Y (f))− Yq(X(f)) = [X, Y ]q(f) = df(q)([X, Y ]q) = 0.

The last equality follows from the fact that q is a critical point. In the previous
relation [·, ·] denotes a commutator of vector fields. We conclude

(8) Xq(Y (f)) = Yq(X(f)).

The right-hand side depends only on the value of a vector field Y at a point q, not on
the expansion Y . The left-hand side depends only on Xq, not on its expansion. We
conclude that both sides depend only on Xq, Yq. Therefore, the relation (7) gives
us well defined bilinear form and from (8) it follows that this form is symmetric.

Thus, we can define the second derivative of a function at its critical points
without any additional structure or definitions. This is not the case if q is not a
critical point. We will see later, in a more general framework, why this is the case.

Similar to the case of normed vector spaces, we defined the second derivative,
d2f , to be a bilinear map on TM , but only at critical points.

If we fix a vector field X then,

d2f(q)(Xq, ·) : TqM → R,

is the linear map on a tangent space TqM . We interpret the second derivative of
a function “along a vector field” as a covector, i.e. it is of the same type as the
differential of the function df(q).
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If we take M = Rn then d2f(q) is given by the well known Hessian matrix of
a function f , 



∂2f
∂x2

1

∂2f
∂x1∂x2

. . . ∂2f
∂x1∂xn

∂2f
∂x2∂x1

∂2f
∂x2

2
. . . ∂2f

∂x2∂xn

...
...

. . .
...

∂2f
∂xn∂x1

∂2f
∂xn∂x2

. . . ∂2f
∂x2

n




Here, (x1, x2, . . . , xn) are coordinates in Rn. 4
The following example also uses manifolds but now we differentiate a section

of the tangent bundle.

Example 13. (Linearization of dynamical systems) As in the previous exam-
ple, let us take a smooth manifold M and let TM denotes its tangent bundle. It is
well known that sections of this bundle are vector fields

X : M → TM,

such that X(p) ∈ TpM for all p ∈ M . Differentiation of this section (i.e. vector
field) gives us a linearization of a vector field. Let q ∈ M be a point where X
vanishes, X(q) = 0. These zeroes of a vector field are also called equilibrium points.
The condition of being an equilibrium point is an analogue of being a critical point
in Example 12.

The flow of a vector field, φt, is the solution of the differential equation

d

dt
φt(x) = X(φt(x)),

with an initial condition
φ0(x) = x.

The dynamical system generated by a vector field X is described by this differential
equation (see [1] for an introduction to dynamical systems and application to the
three-body problem). Zeroes of a vector field, i.e. equilibrium points of a dynamical
system, are fixed points of this system. For those points it holds

φt(q) = q

for all t (this follows from the existence and uniqueness of the solution of a differ-
ential equation).

For V ∈ TqM we define “derivative of X along V ” as:

∇V X :=
d

dt
|t=0 φt

∗V.

From the definition of a push–forward we know that

φt
∗V ∈ Tφt(q)M = TqM,
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since q is an equilibrium and φt(q) = q. It follows that ∇V X ∈ TqM . So “differen-
tiation” of a vector field gives us a vector field.

We saw in Example 12 that we can find the second derivative of a function only
at its critical points. Similarly, described linearization is possible only at equilibrium
points of a dynamical system. Without a property of q being an equilibrium point
we cannot achieve a condition that a derivative of X along V at q belongs to TqM .
In general, φt

∗V belongs to Tφt(q)M and if q is not an equilibrium Tφt(q)M is not
equal TqM . 4

The idea in previous examples is to define the derivative of a map in a way
that the new map we obtain is of the same type as the one we differentiate. For
example, derivative of a differential (along a vector field) is again a linear form.
Derivative of a vector field (along a vector field) is a vector field, again. On the
other hand, we want to generalize well known differentiation in Euclidean spaces
at any point, not only at a zero sets as in Examples 12 and 13. Modifying the first
derivative so that we get the object of the same type as the one we differentiate
leads to the notion of connections and covariant derivatives3. We introduce them
in the next section, and then come back to the role of the zero sets of the first
derivative in a more general context.

4. Connections

In Euclidean space Rn we have an identification of vectors by translation. We
can translate any vector to the origin and then, for example, sum two vectors.
We cannot translate tangent vectors if we are on the sphere or on a manifold. In
differential geometry we introduce a connection, an object that connects nearby
tangent spaces and allows us to “translate” tangent vectors.

Christoffel was the first to study connections from an infinitesimal perspective
in Riemannian geometry. Ricci and Levi–Civita continued this and gave a geometric
interpretation by means of associated parallel4 transport. This was later generalized
by Koszul, Cartan and Ehresmann.

Let us define some objects we will use in this section.

Definition 14. A smooth vector bundle is a triple (E, M, π) where the total
space E and the base space M are smooth manifolds, the projection π : E → M is
a smooth map and the following holds:

• for all p ∈ M the fiber Ep := π−1(p) has a structure of a vector space of
dimension r over the field K ∈ {R,C},
3These two notions are often used to name the same object, since they are closely related. But

it is useful to have in mind that connections are geometrical, and covariant derivatives analytical,
or algebraic, objects, as we will see later in the text.

4We mention here that Euclidean way of introducing the notion of parallelism was one of the
most controversial points in his “Elements”, that gave a birth to several non-Euclidean geometries,
developed by Lobachevsky, Bolyai, Gauss, Riemann and others. We will come back to this point
later in this article.
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• for all p0 ∈ M there exists an open subset U ⊂ M , p0 ∈ U , and a diffeomor-
phism ψ (called local trivialization)

ψ : π−1(U) → U ×Kr,

such that for all p ∈ M restriction

ψ : Ep → {p} ×Kr

is a linear isomorphism of vector spaces.
The integer r ≥ 0 is called the dimension of a vector bundle.

It is obvious that dim E = r + dim M .
Remark 15. We could define a vector bundle in the category of the topological

spaces. In that case we ask for E and M to be topological spaces, π to be a
continuous map and a local trivialization to be a homeomorphism (see [13] for
more details). Here, we are dealing with the smooth structure so when we say
vector bundle we mean a vector bundle in the category of smooth manifolds.

We can now define a section of a vector bundle.

Definition 16. A section of a vector bundle (E, M, π) is a smooth map
s : M → E such that

π ◦ s = IdM .

In other words, s(p) belongs to Ep for all p ∈ M .

The most important example of a section is the zero section, denoted by s0,
which satisfies

s0(p) = 0p ∈ Ep,

for all p ∈ M .

Definition 17. A distribution ∆ of dimension k on a manifold E is a smooth
collection of k-dimensional subspaces

∆p ⊂ TpE.

This means that every point on a manifold E has a neighbourhood U and smooth
vector fields

X1, X2, . . . , Xk : U → TE

such that X1(p), X2(p), . . . , Xk(p) generate ∆p for all p ∈ U .

One way to define k-distribution on n-dimensional manifold is to see it as a
kernel of n− k 1-forms (see [9]).

It is interesting for us to observe a distribution on a special class of manifolds,
namely the total space of a vector bundle.

So, let us take a vector bundle (E, M, π) of range r. Projection π has a
derivative at a point e ∈ E (this is the differential of a smooth map defined on
smooth manifolds):

π∗(e) : TeE → Tπ(e)M.
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Figure 1. Vector bundle

Its kernel,
Ve := ker π∗(e),

defines a distribution {Ve}e∈E on E. This distribution is called a vertical distribu-
tion. We can see that this is a r–distribution, since

Ve
∼= Kr.

This vertical distribution is defined canonically, without any auxiliary structure.
On the other hand, we cannot define its complement canonically. More precisely,
we cannot choose in a unique way a family of subspaces

He ≤ TeE,

such that
TeE = Ve ⊕He,

for all e ∈ E. One choice of such a family of subspaces He is a distribution of
dimension dim M , and we call it a horizontal distribution.

Definition 18. A connection on a vector bundle is a smooth distribution of
horizontal subspaces {He}e∈E such that

(9) TeE = Ve ⊕He

for all e ∈ E.

We can define a connection (at least locally) as a kernel of r 1-forms or as a
kernel of a smooth 1–form

ω : TeE → Kr

with values in a vector space Kr. We can define a connection on every vector bundle
however it is not unique, in general.

Let us take a section
s : M → E.

Its derivative is
ds(p) : TpM → Ts(p)E.

We will denote s(p) by e. For a chosen connection on a vector bundle, equation (9)
defines a smooth family of projections

prV (e) : TeE → Ve.



From differentiation to connections 71

We can now define a new type of derivative of a section.

Definition 19. Composition

prV (e) ◦ ds(p) : TpM → Ve,

is called a covariant derivative of a section s and is denoted by ∇s.

If we are given a vector field on M , X : M → TM , we can define a derivative
of a section s along X

∇Xp
s := prV (s(p)) ◦ ds(p)Xp.

This map can be interpreted as a section of the same vector bundle

∇Xs : M → E,

since
∇Xps(p) = prV (s(p)) ◦ ds(p)Xp ∈ Ve

∼= Ep,

(Ep is a fiber). Therefore, we accomplished one very important thing, ∇Xs is of
the same type as the section s we differentiate.

A covariant derivative satisfies standard properties.

Proposition 20. For sections s, σ : M → E, vector fields X,Y : M → TM
and a smooth function f : M → K it holds

• ∇X+Y s = ∇Xs +∇Y s,

• ∇fXs = f∇Xs,

• ∇X(s + σ) = ∇Xs +∇Xσ,

• ∇X(fs) = df(X)s + f∇Xs.

If we are given a connection we can define a covariant derivative. Vice versa is
also true. If we are given an operator that satisfies properties from Proposition 20
then we can find, in a unique way, a connection which defines that covariant deriv-
ative (see [16] for details).

Example 21. (Second derivatives in affine spaces) Let us, again, consider the
vector bundle

π : L̃ → U,

which we defined in (6). If we are given a connection on this bundle, we can define
a covariant derivative of the specific section given by the derivative of f

Df : U → L̃.

In other words, connections allow us to define the second derivative of a function
between affine spaces. 4
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Example 22. (Affine and Levi-Civita connections) If we are given a smooth
manifold M , a smooth connection on its tangent bundle is called an affine con-
nection. As we said, after Proposition 20, the choice of an affine connection is
equivalent to prescribing a way of differentiating vector fields on a manifold.

If a manifold is moreover endowed with a Riemannian metric g then it is useful
to consider a special connection, the Levi-Civita connection. It is a connection on
the tangent bundle TM that is symmetric

∇XY −∇Y X = [X, Y ],

and is compatible with the metric

X(g(Y,Z)) = g(∇XY,Z) + g(Y,∇XZ).

We ask for previous relations to hold for all vector fields X,Y, Z : M → TM . The
existence and uniqueness of the Levi-Civita connection follows from the fundamen-
tal theorem of Riemannian geometry (one can find a proof of this theorem in [3]).
Since we have a metric on a manifold (on the tangent bundle, to be more precise)
we can speak about orthogonality of vectors in TM . Now a notion of an orthog-
onal complement makes sense. Levi-Civita connection is defined by a horizontal
distribution which is an orthogonal complement of a vertical distribution.

A geometric interpretation of connections was given by Levi-Civita who intro-
duced the notion of parallel transport on surfaces. If we are given a curve on a
surface and a tangent vector at the starting point, the vector can be transported
along the curve by requiring the moving vector to remain parallel to the original
one, to belong to the tangent bundle of the surface and to remain of the same
length. It is hard to understand what is a notion of parallel on a surface since it is
not usually possible to identify all the tangent planes of the surface. The require-
ment of vector field X(t) to be parallel along curve γ(t) can be stated in terms of
the covariant derivative as

∇γ̇X = 0.

In a local trivialization this is a first–order system of differential equations which
has a unique solution if we are given an initial condition (i.e. the vector at the
starting point). 4

Example 23. (Hermitian connections) The most common case of a vector
bundle that we observe is the case when fibers are vector spaces over R. Sometimes,
to point out a difference, we call these bundles real vector bundles. If we ask for
a fiber to be a vector space over C then we have defined a complex vector bundle
(see [13] for a precise definition). A Hermitian metric on a complex vector bundle is
a Euclidean metric on the underlying real vector bundle, which satisfies the identity

‖iv‖ = ‖v‖.
Hermitian connection is the one which is compatible with the Hermitian metric. 4
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5. Examples of moving coordinate systems

Coordinates on a base space (x1, x2, . . . , xn) (or in some local chart U) give us
the basis of a tangent space ∂

∂x1
, ∂

∂x2
, . . . , ∂

∂xn
. In the classical theory we usually use

these vector fields given by this coordinate system. When we work with an operator
∇ calculation is more complicated and sometimes it is convenient to express a result
of covariant differentiation in terms of arbitrary, linear independent vector fields. If
we are given vector fields that are linearly independent at each point of a manifold
then we actually have a frame of a tangent space which varies from point to point.
We emphasize this notion with the following definition.

Definition 24. Let, for each p ∈ M , an ordered basis
Fp = (X1(p), X2(p), . . . , Xn(p))

of a tangent spaces TpM be given. The family {Fp}p∈M is called a moving frame
on M .

A covariant derivative of natural frame, ∂
∂x1

, ∂
∂x2

, . . . , ∂
∂xn

, can be written as

∇ ∂
∂xi

∂

∂xj
=

n∑

k=1

Γk
ij

∂

∂xk
,

where Γk
ij are Christoffel symbols. In Cartan’s theory, the basic idea is to express

everything in terms of a moving frame Fp, not just in terms of the natural frame
(see [16]). In the next example we work with polar coordinate system, the two-
dimensional moving frame in which each point in the plane is determined by a
distance from the origin and an angle from the x-axis.

Figure 2. Polar coordinate system

Example 25. (Polar coordinate system) Let us find Christoffel symbols in po-
lar coordinates (ρ, θ) in R2. We know that relations between Cartesian coordinates
and the polar coordinates are (see Figure 2)

x = ρ cos θ,

y = ρ sin θ.

We change the basis using the equations

eρ =
∂x

∂ρ
ex +

∂y

∂ρ
ey,

eθ =
∂x

∂θ
ex +

∂y

∂θ
ey.
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Thus

eρ = cos θ ex + sin θ ey,

eθ = −ρ sin θ ex + ρ cos θ ey.

It follows that
∂eρ

∂ρ
= 0,

∂eρ

∂θ
= − sin θ ex + cos θ ey =

1
ρ
eθ,

∂eθ

∂ρ
= − sin θ ex + cos θ ey =

1
ρ
eθ,

∂eθ

∂θ
= −ρ cos θ ex − ρ sin θ ey = −ρ eρ.

We conclude that Christoffel symbols are

Γρ
ρρ = Γθ

ρρ = 0,

Γρ
ρθ = 0, Γθ

ρθ =
1
ρ
,

Γρ
θρ = 0, Γθ

θρ =
1
ρ
,

Γρ
θθ = −ρ, Γθ

θθ = 0.

Once we know how to differentiate in polar coordinates we can easily deduce
the famous Kepler’s laws of planetary motion. It is the motion in a central field5

and here we only sketch the ideas of Arnold (see [2] for details). If we are given a
planet of a mass m in a central field (in our case the Sun of a mass M is in the
origin of a field) then the angular momentum

L := ~ρ× ~̇ρ = ρθ̇ eρ × eθ

does not change with time. Thus, the motion of the planet always remains in the
plane. The quantity

L = ρ2θ̇

is also preserved. Preservation of quantity L has a geometric meaning also known
as Kepler’s second law. It states that a line segment joining a planet and the
Sun sweeps out equal areas during equal intervals of time. Using the Newton’s
Second Law

m~̈ρ = F

(
= −G

mM

ρ2
eρ

)

(G is a constant) we reduce the problem of the motion of the planet to the problem
of resolving a differential equation of second order

ρ̈ =
L2

ρ3
− GM

ρ2
.

5A vector field in the plane R2 is called central with center at 0 if it is invariant with respect
to the group of motions of the plane which fix 0.
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Resolving this equation one easily obtains Kepler’s first law: the planet de-
scribes ellipse with the Sun at one of the two foci. Kepler’s third law says that
the period of revolution around an elliptical orbit depends only on the size of the
major axes. One can prove Kepler’s third law by comparing well-known formula
for the area of an ellipse, P = abπ (a and b are major and minor axes), with the
one that depends on the period of the revolution. 4

If we are given some (local) basis for a fiber e1, e2, . . . , er then every section s
can be written locally as

s = h1e1 + h2e2 + . . . + hrer,

for some locally defined functions h1, h2, . . . , hr. Covariant derivative of this section
is

∇s =
r∑

i=1

(dhi ⊗ ei + hi∇ei).

Thus, when we know covariant derivative of ei then we can find derivative of any
section s. Covariant derivative of ei can be expressed in the form

∇ei =
r∑

j=1

θij ⊗ ej ,

where θij are 1–forms. Form θ = (θij)n
i,j=1, with matrix values, is called the

connection form in the basis e1, e2, . . . , er.

Example 26. (Frenet coordinate system) Let us find the connection form in
the Frenet orthonormal frame of a curve γ : I → R3, where I is an interval. Here
we consider the bundle of a rank 3 over the one–dimensional base6.

We know that a curve γ = γ(s), parameterized by the arc length, defines the
Frenet frame in which basis vectors are

T (s) = γ′(s),

N(s) =
T ′(s)
‖T ′(s)‖ ,

B(s) = T (s)×N(s).

Family {T (s)} defines a horizontal distribution in 3–dimensional vector bundle over
γ. We will find a covariant derivative of any section with respect to this distribution.
From the Frenet-Serret formulas follows


T ′

N ′

B′


 =




0 κ 0
−κ 0 τ
0 −τ 0







T
N
B




where κ is the curvature and τ is the torsion of the curve. Any section σ can be
written as

σ(s) = σT (s)T + σN (s)N + σB(s)B,

6In a formal language of vector bundles, it is a vector bundle over I denoted by γ∗TR3, but
we do not intend to discuss that formal language here.
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for some functions σT , σN , σB . Then

∇σ = prN ,B ◦ dσ

= prN ,B ◦ (dσT T + dσNN + dσBB + σT T ′ + σNN ′ + σBB′) .

The Frenet-Serret formulas give us

∇σ = (dσN + κσT − τσB)⊗N + (dσB + τσN )⊗B. 4

6. The case of zero section

In Section 3 we started the discussion on the special role of the zero sets of the
first derivative. Now we come back to this point from the more general viewpoint.

As we saw in Section 4 every vector bundle (E, M, π) has at least one section,
namely the zero section s0. It maps every point p ∈ M to the zero element of the
vector space Ep. The zero section gives a natural embedding M ↪→ E.

Figure 3. Multiple choice on horizontal connection

It was mentioned before that we cannot choose horizontal spaces in the tangent
bundle of a total space in a canonical way7. There is more then one possibility for
choosing subspaces He such that the relation (9) holds. Let us take, for example,
R2 to be a vector bundle over a base space R (x-axis in Figure 3). Then, at point A
of R2 we have a vertical subspace (direction V ), and we can take for He a subspace
defined with the direction H1 or with the direction H2 (see Figure 3). We do not
have one direction (or subspace) that steps-up among the other. But if we take a
point B, that lies in the base space, and look for a horizontal subspace, then the
situation does not require making a choice. We can simply take the x-axis for the
horizontal subspace. Since we have an identification of tangent spaces when we
work with Rn, we can identify x-axis with the tangent space of the base space R.

Now, suppose a section s : M → E has a zero at p ∈ M . Then at a point p we
have a preferred horizontal space. This space is defined as an image

ds0(TM),

7To construct (to prove or to define) something canonically means to construct it using only
the objects we have defined until that moment. For example, we know that any two vector spaces
of the same dimension are isomorphic. However, this isomorphism is not canonical. In order
to construct the isomorphism one has to define some new structure on these vector spaces. For
example, we can construct the isomorphism by choosing the basis for the vector spaces.
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where s0 is already mentioned zero section. This is the reason why we could de-
fine the second derivative of a function at its critical points without introducing
a new structure (see Example 12). These points are exactly intersection points of
a differential df and the zero section in T ∗M . Similarly, in Example 13 we could
canonically linearize a vector field at its zeroes.

7. Connections and geometry

There were several approaches that generalized Levi-Civita’s and Christoffel’s
study of connections. Koszul gave an algebraic framework for describing connec-
tions on vector bundles as differential operators. He defined a connection as a
map

∇ : χ(M)× Γ(M, E) → Γ(M, E)
which satisfies properties from Proposition 20. Here, χ(M) denotes the set of vector
fields on M and Γ(M,E) denotes the set of sections of a vector bundle. Cartan
generalized a notion of an affine connection and defined another thread in the theory
of connections, by presenting connections as differential forms. Ehresmann defined
a connection as a family of horizontal and vertical subspaces on a total space of a
principal bundle. A principal G-bundle, where G is a topological group, is a fiber
bundle π : P → X with a continuous right action P ×G → P such that G preserves
the fibers of P , acts freely and transitively on them8.

Euclid in his Elements founded geometry by logical deduction from his famous
axioms. For centuries it was not clear if the Axiom of parallels follows from the
other axioms. This led to a construction of non-Euclidean geometry. Klein in
his Erlangen Program gave a very general viewpoint for studying geometry. He
regarded geometry as the study of invariants under a group of transformations.
This idea is, in a certain sense, present already in Elements, where the group of
symmetries is the group of isometric transformations.

Theory of connections brings together these two important concepts: the no-
tion of parallelism and the symmetry with respect to a group action (as we said
above in Ehresmann connections). As we mentioned in Example 22, notion of par-
allelism and covariant differentiation are tightly connected. Originally algebraic
and topological in nature, differentiation can be geometrized, if we remove an al-
gebraic structure from an ambient and consider it to be just an affine, instead of
a vector space. It still possesses enough structure to carry the definition of the
first derivative, but the higher order derivatives naturally lead to the notion of con-
nections and the investigation of the symmetries needed in order to avoid getting
more complicated objects after each differentiation. As we have seen in Section 6,
at the zero section there is a natural way to do it in a canonical way. In general,
additional structures or symmetries need to be imposed, even in affine spaces.

The case of smooth manifolds is the beginning of the connection theory in
classical differential geometry, and, more generally, theory of Cartan connections.

8A principal bundle generalize a vector bundle since any vector bundle can be obtained from
a principal bundle using the appropriate group representation.
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Discussion on role of covariant differentiation in Cartan’s generalization of Klein’s
Erlangen Program is something that is beyond the aim of this article. In this
generalization a group acts not only on a homogeneous space but on fibers of a
principal bundle. Further details can be found in [14] and [15].

8. Examples from recent research

Theory of connections appears in topology, especially in the theory of 4-
manifolds, theoretical physics, gauge theory, symplectic topology, etc. It has been
known for a long time that the methods of classical algebraic topology in study-
ing manifolds of dimensions greater than 4 cannot be applied in lower dimensional
cases. In particular, famous Smale’s proof of Poincaré Conjecture in dimensions 5
or more was proved in a completely different ways in dimensions 3 and 4, due to
certain nontrivial linking phenomena in lower dimensions.

In a topology of four dimensional manifolds Donaldson applied the method of
elliptic PDEs to the geometry of connections on principal SU(2) bundles over the
smooth 4-manifold M . He showed that the set N of so called anti self dual connec-
tions is a finite dimensional smooth manifold inside the space of all connections.
Furthermore, he showed that the intersection theory on N can be used to construct
important topological invariants of an original manifold M (see [5, 6]).

Many analytical difficulties of Donaldson approach were simplified by Seiberg-
Witten’s approach, where the SU(2) bundles were replaced by S1 bundles, and
connections on them paired with the Dirac operator (see [11, 17]). The fact that
the group S1 is commutative, unlike SU(2), greatly simplified the analysis in this
case. In a similar spirit, Gromov developed his theory of (pseudo)holomorphic
curves (see famous Gromov’s paper [7]). At the end, we mention that Gromov’s
theory, in special (four dimensional) case is related to Seiberg-Witten’s invariants
(see, for example [18]).

We will end this article by an example that illustrates the above mentioned
ideas (selecting topologically useful finite dimensional moduli space within certain
infinite dimensional manifold), and also demonstrates the use of connections in a
more complex, infinite dimensional context.

Example 27. (Non-linear Cauchy-Riemann operator) Let us take a symplectic
manifold (P, ω) (smooth manifold P with a closed nondegenerate differential 2-
form ω) with an almost complex structure J . From Floer theoretical viewpoint it is
interesting to describe a smooth structure on a set of perturbed pseudo holomorphic
maps. These are the maps

u : R× [0, 1] → P, u = u(s, t),

that satisfy the Cauchy-Riemann equation

(10)
∂u

∂s
+ J

(
∂u

∂t
−XH(u)

)
= 0.

We ask for some additional boundary condition, namely the image of R× {0} and
R×{1} should be on appropriate Lagrangian submanifolds of P . The equation (10)



From differentiation to connections 79

is perturbed with Hamiltonian vector field XH . We can denote the left hand–side
of equation (10) by

∂J(u) =
∂u

∂s
+ J

∂u

∂t
− JXH(u).

We are interested in the zeroes of this operator. Standard procedure is to look at
∂J as a section of a suitable Banach bundles (see [8] for details). We define E to
be the set of W 1,p

loc -maps that decay exponential at the positive and negative end of
the strip R × [0, 1]. The main idea is to prove that the map (or better to say the
section)

∂J : E →
⋃

u∈E
Lp(u∗TP ),

is a Fredholm map, i.e. its first derivative is a Fredholm operator9 between two
Banach spaces—the tangent spaces of its domain and the fibre of a bundle E . In
order to prove that, we have to find a linearization of ∂J . Let ∇ be Levi-Civita
connection on P (which we defined in Example 22). It easily follows that the
linearization of this section at its zeroes is

D∂J (u)ξ = ∇ ∂u
∂s

ξ + J(u)∇ ∂u
∂t

ξ + (∇ξJ(u))
∂u

∂t
−∇ξ(JXH(u)),

and, as we already mentioned, it does not require any additional structure. Note
that D is a covariant derivative on infinite dimensional bundle E , constructed with
the help of Levi-Civita connection on a finite dimensional bundle P . Hence, D∂
is the covariant derivative of a section ∂ on E , i.e. its linearization in a sense of
Example 13, but in an infinite dimensional situation. This linearized operator is
an elliptic operator and from elliptic regularity follows that all solutions of the
Cauchy-Riemann equation are smooth.

Due to the fact that Fredholm operators have a finite dimensional kernel, the
Fredholmness of ∂J has a consequence that the set

M := {u | ∂J(u) = 0}
of pseudo holomorphic maps is a finite dimensional submanifold of an infinite di-
mensional manifold of all smooth maps u. The finite dimensional manifold M gives
rise to several interesting topological invariants of the original manifold P . For ex-
ample, by counting (in the sense of enumerative Algebraic Geometry) the number
of maps u ∈ M that intersect given homology classes in P , one can construct a
new algebraic structure in a cohomology ring H∗(P ;Z). This new product is called
quantum product and can be viewed as a deformation (and in a certain sense a
generalization) of a standard cup product in cohomology (see [10]). 4

Acknowledgments. The author thanks Jelena Katić, Darko Milinković and
Vukašin Stojisavljević for useful comments during the preparation of this article.

9A Fredholm operator is a bounded linear operator between two Banach spaces, with finite-
dimensional kernel and cokernel, and with closed range.
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