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COUSIN’S THEOREM AND TWO OTHER BASIC
PROPERTIES EQUIVALENT TO IT

Haryono Tandra

Abstract. We present direct proofs of the equivalence between both the com-
pactness and the connectedness of the interval [a, b] and the Cousin’s theorem in ways
that allow their beauty to go through.
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It is known that the existence of δ-fine partition of any interval [a, b] character-
izes the least upper bound property (see e.g. in [1, Theorem 2.3.6]). Accordingly, as
we shall show here, the existence of such partitions on [a, b] also characterizes both
the compactness and the connectedness of the interval. We shall demonstrate that
such existence of partitions cannot only be applied to (delightfully) deduce either
the compactness or the connectedness of the interval, but it can also be (delightful-
ly) derived using only either one of these two properties. More than showing their
equivalence per se, here we are particularly keen to present direct proofs, where no
argument by contradiction in any part is used, in ways their beauty can go through.

Recall that the set X is compact if every open cover of X has a finite subcover.
The set X is connected if it is not a union of two nonempty disjoint open subsets
of X, or equivalently, the only nonempty subset of X that is open and closed
in X is itself. Let δ be a gauge on [a, b], that is a positive real-valued function
on [a, b]. Let {Ii}n

i=1 be a collection of nonoverlapping compact subintervals such
that

⋃n
i=1 Ii = [a, b], and let ti ∈ Ii for each i. Then the set of ordered pairs

{(Ii, ti)}n
i=1 is called a δ-fine partition of [a, b] provided Ii ⊆ [ti − δ(ti), ti + δ(ti)],

for each i ∈ {1, . . . , n}. In such a case, every singleton {(Ii, ti)} is a δ-fine partition
of Ii. If x ∈ [a, b], then trivially {([x, x], x)} is a δ-fine partition of [x, x], as
[x, x] = {x} ⊆ [x− δ(x), x + δ(x)].

Theorem 1. The interval [a, b] is compact if and only if, for any gauge δ, it
has a δ-fine partition.

Proof. (⇒) Let any gauge δ on [a, b] be given. Let for t ∈ [a, b],

It
δ := (t− δ(t), t + δ(t)).
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By the compactness of [a, b], choose a finite open cover {Iti

δ }n
i=1 such that, after

relabelling if necessary, we have a ≤ t1 < t2 < . . . < tn ≤ b, where n is chosen
to be the minimum such that {Iti

δ }n
i=1 covers [a, b]. This implies that, for all

i, j ∈ {1, . . . , n}, we have

i 6= j =⇒ I
tj

δ * Iti

δ and Iti

δ * I
tj

δ

and so

(1) ti < tj ⇐⇒ ti + δ(ti) < tj + δ(tj).

Now let T := {t1, . . . , tn}, and

S := {t ∈ T : [a, t] has a δ-fine partition}.

Notice that a ∈ I
ti0
δ for some ti0 ∈ T by which {[a, ti0 ], ti0} is a δ-fine partition of

[a, ti0 ], so that ti0 ∈ S. Thus S 6= ∅. Now, if t ∈ S and b /∈ It
δ, thus t + δ(t) ∈ [a, b],

then there exists t′ ∈ T such that t + δ(t) ∈ It′
δ . It follows from (1) that t < t′,

so that we can choose x ∈ It
δ ∩ It′

δ such that t < x < t′. Therefore, if Pt is a
δ-fine partition of [a, t], so is Pt ∪ {([t, x], t)} ∪ {([x, t′], t′)} of [a, t′], thus t′ ∈ S.
We have just obtained (i) S 6= ∅; and (ii) for every tik

∈ S, if b /∈ I
tik

δ , there exists
tik+1 ∈ S such that tik

< tik+1 . Consequently, since T , thus S, is finite, we have
an increasing sequence ti0 < ti1 < · · · in S, which eventually terminates at some
tip ∈ S such that b ∈ I

tip

δ . Therefore, if Ptip
is a δ-fine partition of [a, tip ], so is

Ptip
∪ {([tip , b], tip)} of [a, b].

(⇐) Let O := {Uα}α∈Λ be an open cover of [a, b]. Let for every x ∈ [a, b], γ(x)
is a positive number such that Ix

γ := (x−γ(x), x+γ(x)) ⊆ Uαx , for some Uαx ∈ O.
Define δ(x) := γ(x)/2, for each x ∈ [a, b]. Let {([xi−1, xi], ci)}n

i=1, where x0 := a
and xn := b, be a δ-fine partition of [a, b]. Since {[ci − δ(ci), ci + δ(ci)]}n

i=1 covers
[a, b], so does {Ici

γ }n
i=1, and hence {Uαci

}n
i=1. This completes the proof.

Theorem 2. The interval [a, b] is connected if and only if, for any gauge δ, it
has a δ-fine partition.

Proof. (⇒) Let any gauge δ on [a, b] be given. Let

Cδ := {[a, t] ⊆ [a, b] : [a, t] has a δ-fine partition}.
Let I :=

⋃
J∈Cδ

J . We assert that I = [a, b]. Since [a, b] is connected, while
[a, b] ⊇ I ⊇ [a, a] 6= ∅, it suffices to show that I is both open and closed in [a, b].
Let x ∈ [a, t] ∈ Cδ. If x is neither a nor an interior point of [a, t], then x = t. If
t = b, it follows that [a, b] ∈ Cδ, thus there is nothing to prove. Otherwise, if Px

is a δ-fine partition of [a, x], so is Px ∪ {([x, x + η0/2], x)} of [a, x + η0/2], where
η0 := min{δ(x), b − x}. Therefore [a, x + η0/2] ∈ Cδ, and so x is an interior point.
This shows that I is open. Now, let x ∈ [a, b] be a limit point of I. Then either
x is contained in some J ∈ Cδ, hence in I, or there exists [a, x1] ∈ Cδ such that
x1 ∈ (x − δ(x), x). In the latter case, if Px1 is a δ-fine partition of [a, x1], so is
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Px1 ∪ {([x1, x], x)} of [a, x], and thus [a, x] ∈ Cδ, so that x ∈ I. This proves I is
closed, thus the assertion I = [a, b]. The fact that b ∈ I then implies that [a, b] ∈ Cδ.

(⇐) Let ∅ 6= A ⊆ [a, b], A is both open and closed in [a, b]. We wish to show
that A = [a, b]. First notice, since A is also closed in [a, b + 1], B := [a, b + 1] \ A
is nonempty and open in [a, b + 1]. Let for every x ∈ [a, b + 1], γ(x) is a positive
number, and

Ix
γ :=





[a, a + γ(x)), if x = a,

(b− γ(x), b], if x = b,

(x− γ(x), x + γ(x)), otherwise.

Now, for each x ∈ [a, b + 1], choose γ(x) such that Ix
γ ⊆ A if x ∈ A, and Ix

γ ⊆ B
if x ∈ B. Define δ(x) := γ(x)/2, for each x ∈ [a, b]. Thus δ is a gauge on [a, b].
Notice that, by the choice of γ(x), for every x ∈ [a, b], we have

(2) A ∩ Ix
γ 6= ∅ =⇒ Ix

γ ⊆ A.

Let {([xi−1, xi], ci)}n
i=1, where x0 := a and xn := b, be a δ-fine partition of [a, b].

If x ∈ A, then x ∈ [xi−1, xi] ⊆ [ci − δ(ci), ci + δ(ci)] ∩ [a, b] ⊆ Ici
γ , for some i ∈

{1, . . . , n}. Thus by (2), ci ∈ Ici
γ ⊆ A. Therefore A ⊆ ∪ci∈A[xi−1, xi]. Conversely,

if ci ∈ A, since ci ∈ Ici
γ , it follows that [xi−1, xi] ⊆ [ci − δ(ci), ci + δ(ci)] ∩ [a, b] ⊆

A. Thus ∪ci∈A[xi−1, xi] ⊆ A. We obtain A =
⋃

ci∈A[xi−1, xi]. Next, for each i

such that ci ∈ A, choose and label [xi−1, xi] as [ai, bi] such that, after labeling,
{[ai, bi]}l

i=1 covers [a, b] minimally and a1 < a2 < · · · < al and b1 < b2 < · · · < bl.
Since A is open in [a, b], if x ∈ A, then either x ∈ {a, b} or x is an interior point of
A. Since a1 is not b nor an interior point, a1 = a. Similarly, bl = b. Now let

T := {bi ∈ {b1, . . . , bl} : [a, bi] ⊆ A}.
Since [a, b1] ⊆ A, T 6= ∅. Let bi ∈ T and bi 6= b. Then bi is an interior point, so
that bi ∈ [aj , bj ], for some j with bi < bj . Therefore [a, bj ] = [a, bi] ∪ [aj , bj ] ⊆ A,
and so bj ∈ T . Since T is finite, it follows that there exists an increasing sequence
bi1 < bi2 < · · · in T that eventually terminates at some bik

= b, meaning that
[a, b] ⊆ A, and so A = [a, b]. This completes the proof.
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