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Abstract. We call a sequence of real numbers, {an},>1, an asymptotically
arithmetic sequence, if its increment a1 —an approaches a real number d, as n — oo.
For each p € [—00, 0], we compute the limit of the increment Hp(a1,...,an, ant1) —
Hp(ai,...,an), of the p-Hélder mean sequence, {Hp(a1,...,an)}n>1, of an asymp-
totically arithmetic sequence {an},>1, with positive terms. Moreover, for p < —1,
we not only show that this limit is 0, but we also compute the rate with which the
increment approaches zero.
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1. Introduction

It is known that given two sequences of reals numbers {a, }n>1 and {by, }n>1,

such that 0 < by < by < --- and b, — 00, as n — oo, we have
ey — Q .. ey . a . a — a,
(1.1) liminf 2" < Jiminf % < limsup — < limsup —4+— "
n—oo n+1 — bn n—oo n n—oo n N— 00 n+1 _ bn

As a corollary of this inequality, we obtain the following Stolz-Cesaro theorem.

THEOREM 1.1. Let {an}n>1 be a sequence of real numbers, and {b,}n>1 an
increasing sequence of real numbers tending to oo, as n — oo. If the limit of the
ratio of their increments

a —a
lim 2ntl =% l,
n—00 bn+1 — by
exists in R := RU{—o00, 00}, then the limit lim,, ., a, /by, also exists in R, and we
have a
lim = =1.

n—oo n

If one takes, for all n > 1, a,, := In(4,) and b,, := n, where {4, },>1 is an
arbitrary sequence of positive real numbers, then inequality (1.1) is equivalent to

(1.2) lim inf AZ“ < liminf {/A, <limsup {/A, < limsup AA”H'

n—oo n n—0o0 n—o0 n—00 n

As a corollary of this inequality, we obtain the following D’Alembert theorem.
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THEOREM 1.2. Let {4, },>1 be an arbitrary sequence of positive real numbers.
If the limit of the ratio of the consecutive terms

An+1

n

lim

n—oo

:l7

exists in [0, 00], then the limit lim,_,oo /A, also exists in [0, 0], and we have

lim /A, = 1.

n— oo

A classical application of D’Alembert theorem is the following limit

Unl 1
(1.3) lim © = =

n—oo N e
The reciprocals of the Stolz-Cesaro theorem and D’Alembert theorem do not hold
in general.

Starting from the well-known limit (1.3), we can try to go backwards, and
assuming that the reciprocal of Stolz-Cesaro theorem holds for a,, := ¥/n! and b,, :=
n, for all n > 1, we may ask whether the sequence {(an+1 — an)/(bnt1 — bn) }n>1
converges to 1/e. This sequence is

7‘?1 ‘Zn = "/ (n+1)! - Vnl,
n+1 — Un

for all n > 1. T. Lalescu proved that, in this particular case, the reciprocal of
Stolz-Cesaro theorem holds and we have

iy (/G T ) =2,

Since then, the sequence

Ly = "®/(n+1)! = Vn!,

for all n > 1, has been called the Lalescu sequence.

Starting from the observation that, for all n > 1,
\"/n! =v1-2--.n= Yai-asg - ap,

where {ay }r>1 := {k}r>1 forms an arithmetic sequence with the common difference
ap+1 —ar =k + 1 —k =1, we generalize this problem in two ways.

First, we consider an “asymptotically arithmetic sequence of positive limit
difference d”, that means a sequence with (strictly) positive terms, {ay }»>1, such
that there exists

lim (ap41 —an) =d >0,

n—oo

and compute the limit

(1.4) lim (/a1 an - Gnp1 — a1 -a2---ap) .

n—oo
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Second, observing that, for all n > 1, /ay - as - - - a, is the geometric mean of the
positive numbers a1, as, ..., a,, and the geometric mean is the 0-Holder mean
Hy(ay,as,...,ay) of the same numbers, for all p € [—c0, o0], we compute

(1.5) nll_)n;o [Hp (a1, .., an,an+1) — Hp (a1, a2,...,a,)],

where Hy(a1, ag, ..., a,) denotes the p-Holder mean of the positive numbers ay,
as, ..., an, for all n > 1.

We are not the first people to consider this problem. The limit (1.5) was
already computed, when p € [0, oo, in [1]. Our contribution consists in computing
this limit for p € [—o0, 0), and in the case when p € (—oo0, —1], not only we will
see that this limit is 0, but we will also see how fast the increments of the Holder
means are converging to 0.

The paper is structured as follows. In Section 2, we compute the limit (1.4),
and in Section 3, we calculate the limit (1.5), for all p € [—o0, ] \ {0}, for an
asymptotically arithmetic sequence of positive limit difference d.

2. The limit of the increment of the geometric mean sequence of
an asymptotically arithmetic sequence with positive terms

We have the following theorem.

THEOREM 2.1. Let {ay}n>1 be a sequence of positive numbers such that the
sequence {an41 — an tn>1 i convergent and d := lim,_,o(@n+1 —an) > 0. Then we
have

d

Jim (mR/ara - angy = Yfaay - -an) = o

Proof. Since lim,,_, o (an+1 — an) = d, it follows from Stolz-Cesaro theorem
that
lim an _ lim Ont1 = Gn d
n—oo 1N n—oo (n+1)—n

Since d > 0, we have

. . anp .
lim a, = lim — - lim n=d- 00 = oo.
n— o0 n—oo M n— oo

Using D’Alembert theorem we have
(2.1)

lim »
n—oo

_ 1 a1ag -+ Aplp41 aiaz - - - an
= lim ) / -
n—oo an+1 an
a " Q. "
. . 1
= lim n =1/ lim nt .
n—00 \ Upi1 n—00 (7%

. mn a/l 012 “ e an
lim Y———— =
a

a1a2 - ap
n
n—oo an

n
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Let us observe that

n nt+1 — Qn d
lim Intl _ lim (1+a+1a):1+:1_

n—oo a’7l n—oo aTI xXO

The limit from the denominator of the fraction from equation (2.1) is a 1°° limit.
We have

. Yvaias - ay 1
Jim SRS —

an

a ayn | Tnt1—a on
lim | (1 Stimtn ) e

n—oo an

1

lim L) lim (an41—an)

an
. An+41—an an+1w*an (nﬂoc ") n—oo
lim 1 + e —
n

n—oo
1 1
e%'d o 6,

since (any1 — an)/an — dj/oo =0, as n — oo, and lim, (1 + x)"/* = e. We have

lim ("®/aiaz- - Gnt1 — Ya1a2 - an)

n—oo 1

. (a1a2...an)ﬁ
= lim "®/ajas---any1 |1 — -

n— oo T
an+1

1
n+1

Thus, since (1/n) —1/(n+ 1) = 1/[n(n + 1)], we obtain

lim ( "+\1/a1a2 crQp41 — {L/alag s an)

n—oo
. /0102 Apg . Qpy1
= | lim "] lim 2t
n— oo an-i—l n—oo N + 1
1
x lim ¢ (n+1)[1-— ~y = 7
n—00 Ap41
1
_ ( Xaragay \ 7T
1 . 1 ( An 41 d .. 11—y
=—-d- lim T =—- lim —5—,
e n— oo Y e n—oo P |
where
Yartaz - ay Yaraz---a, a, n+1 n
yn = — —_ .
Qg1 an nt1 n+1
1 1
— — . d o — 1 = -
e d e

Let x, :=In(y,)/(n+ 1) — 0, as n — oo. We have

1
d 1—yi™t
lim (""/aiaz- - aGnp1 — Yara2---ap) = — - lim $

n—oo e n—oo —_—
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In(yn)

d . l—emn# . . 1l—e® 1
=i gy i () = 2 Jim — ln(e>
n+1
d 1 — e%n d Tn _ ]
% him =2 i €
e n—oo T e n—oo Ty
d etn — 0 d
= — . 1. —_— / O
A =[O,
where f(z) := e®. Since f'(0) = 1, we conclude that
. d
lim (""/aiaz- - apy1 — Yara2 - ap) =—. ®
n—oo e

3. The limit of the increment of the Hélder mean sequence of
an asymptotically arithmetic sequence with positive terms

In this section we show that the sequence of the p-Holder means, of an asymp-
totically arithmetic sequence with positive terms of positive limit difference d, con-
verges to d[(1 4 p)*t]=/P, for all p € [—o0, 0] \ {0}, where 2 := max{x, 0}, for
any real number x. For any positive numbers z1, z2, ..., T,, and for any number
p € [—00,00], we define

H,(z1,22,...,%x)
(Ii’+w5:--+w5)1“’7 if p € R\ {0},
})%(wy/p:m if p=0,
; pli—>Holo (M)UP:max{xhxg,...,xn}, if p= o0,
pEI—noo (w)lm:min{xl,xg,...,xn}, if p=—o0,

and call H, (1,22, ...,zy) the p-Hélder mean of x1, x2, ..., Tp.

We have the following theorem.
THEOREM 3.1. Let {a,}n>1 be a sequence of positive numbers such that the

sequence {nt1 — aptn>1 95 convergent and d := lim, o (@nt1 — an) > 0. Then,
we have

(3.1)
nlLIr;o[Hp (a1, an,an+1) — Hp (a1, a2, ..., a,)]
e, ifpe (—1s0)\ {0},
_ )& if p=0,
a d, if p = o0,
0, if p € [—o0, —1].
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Moreover, we have

lim {In(n) [H_1 (a1,...,an,ant1) — H_1 (a1,a2,...,a,)]} =d,

n—oo
and for all —oco < p < —1, we have

1
lim {n1+(1/p) [Hy (a1, an, any1) — Hy (a1,a9,...,a,)]} = ———,
n—o00 p + P q”{l/a"}”q

where q := —p and |[{1/an}||q is the [9-norm of the sequence {1/an}n>1, defined as

i1/t =[5 ] "

n=1 "

Proof. We have already proven formula (3.1) for p = 0 in the previous section,
and so we may assume that p # 0. We distinguish between five cases:

Case 1. If p = oo, then since lim,, oo (an+1 — an) = d > 0, there exists
Ni € N, such that for all n > Ny, we have apy1 — a, > 0, which means ay, <
an,+1 < an,+2 < ---. Since lim, o a, = 00, there exists Ny € N, Ny > Ny, such
that, for all n > Ny, we have

an > max{ar,as,...,an, .

Therefore, for all n > N,, we have

Hy (a1, a2,...,a,) = max{ai,as,...,an} = an.
Thus, we have
lim [Hoo (G1,...,a0n,an+1) — Hoo (a1,a2,...,a,)] = im (ap41 —ay) =d.
n—oo n—oo

Case 2. If p € (—1,00) \ {0}, then the sequence {nP*1},>; increases and
tends to +o00, as n — oo. This allows us to apply Stolz-Cesaro theorem and obtain

(3.2)

H}j(al,ag,...,ap) a117+a127++a2

li — 5
rLl—>H;o np nl—)n;o Pl
o (@ tal ) (] faft- - tah)
e (n + 1)p+1 — pptl
aﬁ-‘,—l . (n+1)P

= ) A (g Dy =
For each n > 1, applying Lagrange Mean Value theorem to the function f(x) = zP*!
on the interval [n,n + 1], we conclude that there exists a number ¢, € (n,n + 1),
such that
(n+ 1)p+1 — pptl
n+l-—n

=(p+1)EL.
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Thus formula (3.2) becomes

(3.3)  lim Hylav,az,.oap) oy (n+1)7
: n— o0 04 n— oo (n + 1)p n— o0 (n + 1)p+1 — pptl
" P 1)P 1 1177
[lim a“} .hmwzdp. [lim n+ }
T
p+1 p+1

since we saw in the previous section that lim, . (a,/n) = d, and for all n > 1 we
have
n+1l n+1 n+1
< <

n+1 Cn, n

)

and so, by the Squeeze theorem, it follows that lim,_,.[(n +1)/c,] = 1.

Using the same number N, as in the previous case, which has the property
that for all n > Ns, we have a, 41 > max{ai,as,...,a,}, we conclude that, for all
n 2 NQI

e if 0 < p < oo, then

ay +---+ah+ay ., al+ah+---+ab
n+1 n
— Hg(ala"'aanaan-‘rl) >H5(a1;a25"'aan)'

o if —1 <p <0, then

o t--tditan, _dltayt--+af
n+1 n
<~ Hg(al,...,an,anH) <H5(a1,a2,...,an).

To shorten the notation, we will define, for all n > 1,
Hpm = Hp (al,ag, S ,an) .

Thus, for all n > N, applying the Lagrange Mean Value theorem to the function
g(x) = &'/? on the interval [HE,,, HY ], if p > 0, or on the interval [H? |, HE ],
if p < 0, we conclude that there exists a number &, strictly in between H? = and

p.n
H} ., such that

p p,n

1 l(ﬁn)(l_p)/p . Hg,n-&-l - Hg,n

1 4
Hypp1 —Hpp = ]3'5’(‘1 o [Hp,nﬂ —Hp ]

— Hpﬂl-‘rl - Hp,n = 1; ’ np np—1
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Therefore, we have

(3.4)
nh_,m [HP77’L+1 - Hp,n]
1 g, \10P/P af+-+aftal,,  aftal+--+ah
=—- lim (”) . lim ntl m
p n—oo L np | n—00 ’I’Lp_l
i 10-p)/p b p )
1 n na,, ay + -+ a?
= —. lim i . lim +1 (ay )
p n—oo | npP ] n—oo Tlp(’I‘L + 1)
1(-p)/p b p )
1 n . na,, a; + -+ ab )
=—- lim 5— . lim +1 (af ) lim
p n—oo npP ] n— o0 nptl n—oomn + 1
. 1 dP (1-p)/p ) nafb+1 _ (aglj 4ot a%)
= - lim 1
p p+1 n— oo np+1
. di-r - nai+1—(ai’+...+aﬁ)
B p(l +p)(1_p)/l) n—oo np+1 .

since lim,, (£, /nP) = dP/(p + 1) as it will be explained below.

The fraction &,/nP is in between the numbers HY , /nP and H] . ,/nP =
H .1/ (n+1)P-[(n+1)/n]?, and since we know, from formula (3.3), that HS , /nP —
dP/(p+1), as n — oo, it follows from the Squeeze theorem that &, /n? — dP/(p+1),
as n — oo.

Since p + 1 > 0, the sequence {n?*'}, > is increasing and tending to -+oo,
as n — o0o. Thus, we can apply Stolz-Cesaro theorem and using formula (3.4), we
obtain

im [Hppi1 — Hp,pl

n—oo
_ d'-r o napyy —(af 4o +af)
- p(l —|—p)(1_17)/17 . nl—>ngo npt1
e

" p(1+p)p)/p
[(n+D)ay 5 — (af +---+ab +ap )] — [nay, ) — (af + -+ ab)]

X nlL»H;o (n + 1)p+1 _ np+1
= _ (n+1)(ap o —apyy)
=—— . lim
p(l -|—p)(1*10)/;0 n— o0 (er l)cg ’

for some ¢, € (n, n+1).
Finally, applying the Lagrange Mean Value theorem to the function h(z) = zP
on the interval [a,, ap41], for each n > Ny, there exists 0, € (an, ant1), such that

p—1

p _ P —
a‘n+1 an - pnn

(ant1 — an) .

Thus, we obtain

dl_p 1 p-1 n - Un
lim [Hp il — Hp n] = . lim (n + )pnn (Cl p+1 a )
n—oo ’ ’ p(l —+ p)(l_P)/P n— oo (p + ]-)Cn



Hoélder means of asymptotically arithmetic sequences 9

__dr lim 4L p_l.(a —ay)
(L+p)t/p n—oo| ¢ Len mh

_dtr L I e
=—— . lim < lim — - lim (ap41 —an)
(1+p)l/r n=c ¢, n—oo Cp, n—00
di=r d
=1 d= —————.
(L+p)t/r (1+p)t/e

Here, we used the fact that lim, .., 2= = d, due to the fact that a, < 7, < ans1

and n < ¢, <n+ 1, and so we have

(079 < Qﬂ < Ap+1
n+1 Cn n

from which, since a,/n — d, as n — oo, we conclude that n, /¢, — d, as n — oo.

Case 3. If p=—1, then

9

n
f{_l(al,ag,...,an) =73 1 i
ar ta, Tt A
is the harmonic mean of the numbers a1, as, ..., a,. Using the same short notation
H_y, for H_ 1(a1,az,...,a,), for all n > 1, we have
(3.5)
n+1 n
Hoanyi—Hoan=+ 1 1 1 1 1
ot ta tan wte Tt

i+i+...+%f n

_ ai az n An+41

(L+L+...+L)(L+...+L+ 1 )
ay az an ay An an41
1

1 1 1
L+ 1y

Qn An 41

n
An+1

(1 1 1 1 1 1)
Cﬂ+a+“4wJ(a+””ﬁa+%H)
Applying the Limit Comparison Test to the series with positive terms Y > 1/a,
and Y ° | 1/n, since

. 1/a, .oon 1
Ay = dm =5 €(0.00)

and the series Y~ | 1/n is divergent, we conclude that the series >~ | 1/a, is also
divergent. Thus, using formula (3.5) we have

lim (H_ —H_ = lim
Ji (Hongn = Hoan) = i 55—
al Qn An41

3 n
limp,— oo Ant1

mmmKi+i+m+$ﬂﬁ+m+f+;)}
n n n+1

1 yd
T o oo-o0




D. Marghidanu, A. I. Stan

10

Moreover, using the Stolz-Cesaro theorem we have
(L+...+L+ 1 )_<L+L+...+i)
QAn An41 al a2 QAn

y i+é+~~+i_l. a
) In(n) = e In(n + 1) — In(n)
I 1 I 1 I i 1
= lim = lim | ——— | lim —— - lim
n—oo In(1+ (1/n)) - apt1 n—oc [nln(l+ (1/n))| n—-con+1 n—oo api
_ 1 _ .1
iMoo In (14 (1/n))7) d In(e) d d
Hence, using formula (3.5), we have
Jim [In(n) - (H-1,n41 = Ho10)]
. In(n) . 1 1 1
=1 -1 — — H yp+1—H_1n,
”Ln;oi*“"ai % nLH;oKal+ an+an+1>( 1,n+1 1,n)
v T ani
1 1 1 1
=d- lim (+~-~++ ) T T T
e a1 On n+1 ay +oeet an Ant1
T
1, 1 1 1 1
<a+r+ +a7)<ﬁ+ +L aw)
y 1/d
=d- lim [1- 4—2 ) = -(1—/>:d.
n—oo a + a + -+ an (6.¢]

Thus, H_1 41 — H_1, approaches 0 in the same the way that d/In(n) goes to 0,

as n — oo.
Case 4. If —co < p < —1, then let us define ¢ := —p > 1. We have

(3.6)

. o (Gt tahvan, VPl pal 4+ 4 ap\ P
Pt P n+1 n

B (n+1)1/4 nl/a

- /g 1/q

|~

]1/q _pl/a {ZZI; P ]1/q
]1/q

sl

(n+ 1)1 {22:1 %
] [

[+ )Vs — /] [, ] R { [zt & ] v (S ] Uq}

= [ Z:I é} 1/q ' [Ezi_ll a—ld 1/q .

For each n > 1, applying Lagrange Mean Value theorem to the function f(z) = zl/a
1L S L there exist ¢, € (n,n+ 1) and

on the intervals [n,n+ 1] and [Y,_; =, 07 =7
k Y k
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Qpn € (ZZ:l al‘é7 E :Zii al;i )7 such that
1
(n+ 1)1/q _plla = aCgllfq)/q

and

n+1 1/q n 1/q
3 Ll 3 L I N Y
ai ai " al

k=1 k=1 q n+1

Substituting the last two formulas into formula (3.6), we obtain

(3.7)

_ n 1/q — q
C'Ezl a)/q |:Zk:1 L:| _n(l/q)fqoégll /9 _n

n Var a1 5 1%a
S]]

n+1

Since we have

q q
lim Lah _ (hm n) =1/d? € (0,00),

n—oo 1/n‘1 T \n—oo Qp,

and the series Y, (1/n?) converges (because ¢ > 1), >_>° ,(1/al) converges, too.
Therefore, the sequence {1/a, },>1 belongs to the I%-space.

Because for alln > 1, n < ¢, <n+1, and (1 —q)/q < 0, the Squeeze theorem
(1-q)/q

implies that ¢, — 0, as n — 0o. Also, because for all n > 1, Y}, % <ap <
i é, the Squeeze theorem implies that a,, — > o | alg = H{1/an}tn>1ll%, as

n — oo. Passing to the limit, as n — oo, in equation (3.7), since (1/q) — ¢ <
(1/g) — 1 < 0, we obtain

nlLII;O [Hp(a1,...,6n,0n41) — Hp (a1,02, ..., ay)]
1 1

- 1/q 1/q
: n 1 : n+l 1
lim,, oo {Zkzl ﬁ] -lim,, o0 [Zkzl g}

n 1/q
1 q
x | lim {17979, lim [Z q] — lim nM979. lim (7979, lim (7;

n— oo n—oo 1 a’k n—o00 n—oo n—o00 an+1

L0 [Z;?;l (%Z}l/q }(l—q)/q' 1
: ]
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Moreover, we have

n—oo

lim {nl_(l/q) “[Hp(a1,--.,an,an+1) — Hp (a1, a9, . .. ,an)]}

(1=)/a [2221 L} Va n/0)=a,(1=0)/a_n

= lim nl_(l/Q) _ a(li Gy
n—o00 q n 1 1/q ntl 1 1/q
k=1 af k=1 aT
1/q _
L (/)04 {Zzzl é} — pimag(tm9/a agil
= g . nl—>ngo n 1 l/q ntl 1 1/q
k=1 ol k=1 a7

Each factor and term from the numerator and denominator of the last fraction has
a finite limit as n — oo. Thus, we have

tim {0~ 0/D - [Hy i1~ Hyl |

n—oo

1 1

T q . /g | R
q limy, 00 {22:1 %] limy, 00 [ Zil %}

) n 1 1/q nd
x | lim (cn/n)( ~0/4 . lim {Z q} — lim n'77- lim o(!79/7. lim

n—oo n—oo P ak n—oo n—oo n— o0 an+1
1/q (1-q)/q
o] 1 oo 1 1
RN S R T | M S
q [ZOC ir/q ql{1/an}n>1lly’
k=1 a7

since, for all n > 1, we have n/n < ¢, /n < (n+1)/n, and so ¢,/n — 1, as n — oo.

Thus, {Hp(ai1, ..., an, any1) — Hpla1, az, ..., an)}n>1 converges to 0 like
{(n/o-11 .

Case 5. If p = —o0, then since a,, — 0o, as n — 00, there exists NV € N, such

that any = min{a, | n € N}. Thus, for all n > N, we have
H_oo (a1, .. an,any1) — H oo (a1,02,...,0,) = an —any = 0.
Therefore, we have

nlggo [H_o (a1,.- - an,ant1) — H_o (a1,a2,...,a,)] =0. =
COROLLARY 3.2. Let {ay}n>1 be a sequence of positive numbers such that the
sequence {an+1 — an fn>1 s convergent and d := lim, . (any1 — an) > 0. Then,
o For —1 < p < o0, we have
Hp(al,ag,...,an) d

li =
nl—)ngo n (1—|—p)1/17’




Holder means of asymptotically arithmetic sequences 13

where for p = oo, (14 p)'/P = lim,_o(1 + 7)Y/ = 1, and for p = 0,
(1+p)/P = lim, _o(1 +7)/" =e.

o Forp= —1, we have
lim ln(n) . H71(a1; az, ..., an) —d.
n—oo n
o For —oo < p < —1, defining q := —p, we have
1
lim {nl/p “Hy(ay,az,...,00)} =
n—oo p ||{1/an}Hq

Proof. Indeed, using the Stolz-Cesaro theorem and the previous theorem:

e If p > —1, then we have

lim Hy(a1,a2,...,an) ~ lim Hy(a1, .. an, any1) — Hylar,ag, ..., ap)
n—o0 n n—o00 n+1l—n
. d
= nli}n;o [Hp (al, ey Qp, (ln_;,_l) — Hp (al, ag,y ..., an)} = W
e If p=—1, then we have
lim Hp<alaa2a'-~7an) — lim Hp(ala“'aanaan—‘rl) *Hp(al,azw-wan)’
n—oo n/In(n) n—oo (n+1)/In(n+1) — n/In(n)

where here, in order to be allowed to apply the Stolz-Cesaro theorem, we need
to check that the sequence {n/In(n)},>n, is strictly increasing for some large
N. Indeed, the function f : (1, c0) — R, defined by f(x) = z/In(z), has the

derivative
1 In(z) —x - (1/x) B In(z) — 1

f'@) In?(z)  In®(2)

for all z € (e, 00). Thus, we can see that {n/In(n)},>s is strictly increasing.

>0,

Applying the Lagrange Mean Value theorem to the function f(z) = z/In(z),
on each interval [n, n + 1], for n > 3, there exists r,, € (n, n + 1), such that

In(n+1) In(n)  1?(r,)

n+1 n o In(r,)—1

Thus, we have

. Hp(alaQQa"'7a7L) 1 Hp(ala'”aanaa’n-‘rl)_Hp(alaaQa"-aan)
lim = lim
n—oo n/In(n) n—oo (n+1)/In(n+1) —n/in(n)
~ lim lnz(rn)[Hp(al, ey Oy Q) — Hp(ar, ag, ..., ay)]
n—00 hl(’l”n) -1
= nh_}rr;o {ln(n) - [Hp(a1, ..., an,an+1) — Hp(ar,az,...,an)]}
« fim 20m) g )y g

n—oo In(n) = In(r,) —1

since n < r, <n -+ 1 for all n > 3.



14 D. Marghidanu, A. I. Stan

e If —co < p < —1, then denoting ¢ := —p > 1, and using the Stolz-Cesaro
theorem, we have
Hy(ay,as,...,a,)
. 1/p . _ 1 plal, 42, ; Un
nh_)n;(} n H,(a1,a2,...,a,) nh_)néo /d
~ m Hy(a1,...,an,ant1) — Hp(ar,az,. .., an)
n—oo (n—|—]_)1/q —_nl/a ’

Applying the Lagrange Mean Value theorem to f(z) = '/9 on each interval
[n,n 4 1], for all n € N, there exists ¢, € (n, n+ 1), such that

(n4+ )Y —pt/a = Loty _py = Lam-,
q q
Thus, using our theorem and the fact that ¢,/n — 1, as n — oo, we obtain

lim [nl/p -Hy(ay,aq,..., an)}

n—oo

. Hy(a1,. . an, any1) — Hylag,ag, ..., ap)
= lim

n—00 (n + 1)1/4 —nl/a
~ lim Hy(a1,...,an, any1) — Hplar, a9, ..., an)

n—oo (1/q)cf(1/P)*1

i {np ’ ()Pt

=g lim {nl’ [Hp(ai,...,an,any1) — Hp(ar,as,. .., an)]} - lim (—)

n— oo n—oo \ N

1 1 1

1p

U anteoalle T anteoilly
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